Role of Metal Lattice Expansion and Molecular π-Conjugation for the Magnetic Hardening at Cu–Organics Interfaces

نویسندگان

  • Lorena Martín-Olivera
  • Dmitry G. Shchukin
  • Gilberto Teobaldi
چکیده

Magnetic hardening and generation of room-temperature ferromagnetism at the interface between originally nonmagnetic transition metals and π-conjugated organics is understood to be promoted by interplay between interfacial charge transfer and relaxation-induced distortion of the metal lattice. The relative importance of the two contributions for magnetic hardening of the metal remains unquantified. Here, we disentangle their role via density functional theory simulation of several models of interfaces between Cu and polymers of different steric hindrance, π-conjugation, and electron-accepting properties: polyethylene, polyacetylene, polyethylene terephthalate, and polyurethane. In the absence of charge transfer, expansion and compression of the Cu face-centered cubic lattice is computed to lead to magnetic hardening and softening, respectively. Contrary to expectations based on the extent of π-conjugation on the organic and resulting charge transfer, the computed magnetic hardening is largest for Cu interfaced with polyethylene and smallest for the Cu-polyacetylene systems as a result of a differently favorable rehybridization leading to different enhancement of exchange interactions and density of states at the Fermi level. It thus transpires that neither the presence of molecular π-conjugation nor substantial charge transfer may be strictly needed for magnetic hardening of Cu-substrates, widening the range of organics of potential interest for enhancement of emergent magnetism at metal-organic interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method

Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu)  were studied  for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...

متن کامل

Emergent magnetism at transition-metal-nanocarbon interfaces.

Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with...

متن کامل

Evaluation of Extremely Low Frequency (ELF) Electromagnetic Fields and Their Probable Relationship with Hematological Changes among Operators in Heavy Metal Industry

Introduction: It is important that biological and health effects from the induction of currents and fields in the body by extremely low frequency (ELF) fields are fully explored to determine the effects produced at the molecular, cellular and organ levels. The objective of this study was to evaluate the intensity of ELF electromagnetic fields and its probable relationship with hematological cha...

متن کامل

Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution.

Motivated by recent experimental synthesis of a semiconducting metal-organic graphene analogue (J. Am. Chem. Soc., 2014, 136, 8859), i.e., Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 [Ni3(HITP)2], a new Kagome lattice, Cu3(HITP)2, is designed by substituting the coordination of Ni by Cu. Such substitution results in interesting changes in electronic properties of the M3(HITP)2 bulk and two-dimens...

متن کامل

Coordination and Siting of Cu+ Ion Adsorbed into Silicalite-2 Porous Structure: A Density Functional Theory Study

Coordination of Cu+ ions adsorbed on plausible sites of a silicalite-2 lattice has been investigated computationally via hybrid density functional theory method at the B3LYP/6-311+G* and B3LYP/Def2-TZVP levels of theory using molecular models of the active site. The symmetrical coordination of Cu+ ions to almost five oxygen atoms of the all-silica framework in six-membered ring (6MR) sites of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2017